

TECHNOLOGY OF BIOGAS PRODUCTION FROM LIVESTOCK WASTE IN A TRADITIONAL WAY

https://doi.org/10.5281/zenodo.11364912

Nurmukhamedova Vazira Zakhriddinovna Niyazov Hasan Niyozovich Isabayev Xurshid Nabijon oʻgʻli Nurmirzayev Ibrohim Abdulla oʻgʻli

Tashkent Institute of Chemical Technology e-mail: <u>khasan.niyozov@mail.ru</u> phone: +99897-771-16-88

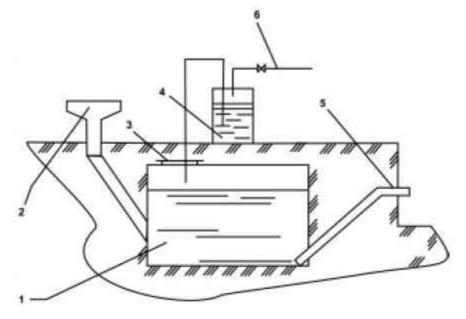
ABSTRACT

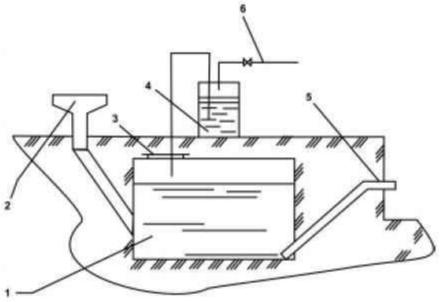
A very large number of plants are produced in Uzbekistan (5.0 million tons of hemp per year; 6.0 million tons of branches, tree leaves and branches, corn cobs, etc. per year). around) and biomass based on farm animal waste are recognized.

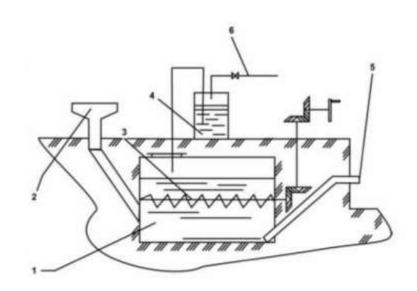
The total amount of energy generated from a single hemp stalk is 2.3 million per year. is estimated as equivalent to a ton of oil. Its technical potential is equal to 257.2 thousand tons of oil equivalent per year.

Keywords

digestion processes , methane-producing bacteria , anaerobic conditions , amount of pole viruses , heat capacity of combustion , agricultural animals .


Mechanism of biogas production and methane gasification. All types of fermentation processes are manifested as the transformation of organic matter into specific changes by microorganisms belonging to different taxonomic groups. In addition to the above, there is another process in nature that differs from others in terms of its quantity, range, and variety of microorganisms participating in it, and that is the process of methane fermentation.


Methane pollution is the result of the action of various groups (associations) of microbes. In this process, the organic material (except lignin) undergoes a profound transformation, resulting in the formation of methane, carbon dioxide and other microbial products. Depending on the conditions (thermophilic, mesophilic, psychrophilic) - this is a very long process. In this, non-living organic substances (plant and animal biomass) are broken down into simple components.


General description of technological processes in biogas plants.

JOURNAL OF MULTIDISCIPLINARY BULLETIN ISSN(Online): 2984-6722 SJIF Impact Factor | (2024): 6.752 | Volume-7, Issue-5, Published | 20-05-2024 |

Scheme of biogas equipment specialized for manual pouring and mixing of substrate

1- bioreactor; 2- loading hopper; 3- mixing device; 4- water trap; 5- exhaust pipe; 6- gas outlet.

The conditions necessary for the formation of methane are given in the table below.

Table 1

Methane is a product to be conditions

Indicators	Normative	C h saddle			
	indicators	indicators			
pН	6.8-7.4	6.4-7.8			
Amount of volatile acids (by					
CH ₃ COOH)	50-500 mg/1	200 mg/1			
Total Alkalinity (according to					
CaCO ₃)	500-1500mg/1	1000-3000			
Exhaust gas composition	65-70% methane, 30	0-35% carbon dioxide			
Salts	and other gases				
NH 4 (by N)		300 mg/l.			
N a		3500-5500			
		mg/l.			
K		2500-4500			
		mg/l.			
C a		2500-4500			
		mg/l.			
Temperature, ⁰ C	33-37.				
Methane production	0.3-0.4.m ³ /kg of dry organic matter.				

Methane-forming bacteria have higher growth requirements than acidforming bacteria, which means they need completely anaerobic conditions and more time to multiply.

Table 2. of biogas physicist features

	Co m ponents				A mixture of 60%	
Indicators	CH ₄	CO2	H 2	H_2S	methane and 40% SO ₂	
Volume q name %	55-70	27-44	1	3	100	
Combustion heat volume mdj/m ³	35.5		10.8	22.8	21.5	
Combustion temperature ⁰ C	650-750		585		650-750	

JOURNAL OF MULTIDISCIPLINARY BULLETIN ISSN(Online): 2984-6722 SJIF Impact Factor | (2024): 6.752 | Volume-7, Issue-5, Published | 20-05-2024 |

Density,	gr/l;	0.72	1.98	0.09	1.54	1.20	
normative		0.72	1.90	0.09	1.34	1.20	ĺ
nonnative		102	408	31	349	3.20	ĺ
border		102	100	51	517	5.20	

The physical properties of biogas indicate the possibilities of its use.

Table 3.

Har different combustible gases burning heat ratio

Type of fuel (heat of combustion)	CH	as (in ¹ ervativ 62	4	Natural gas in 1 m ³	Propane in 1 kg	boiler room fuel in 1 kg	Diesel fuel in 1 l	Electric current (kVT.ch)
Biogas 56% CH 4 (20.0 MDj/m ³	1.0	0.91	0.80	0.60	0.44	0.47	0.56	5.6
Natural gas (33.5 MDj/m ³)	1.68	1.52	1.34	1.00	0.73	0.79	0.93	9.3
boiler room fuel (42.3 MDj/kg)	2.12	1.91	1.69	1.26	0.78	1.00	1.17	11.7

The amount of manure and biogas that can be obtained from agricultural animals and livestock is presented in the table below.

Table 4.

Indicators of biogas output from manure

Show k ich	A cow	A pig	Parand a
Amount of manure per head per			
day, kg	55.0	3.5	0.2
Amount of biogas produced per			
head per day, m ³	1.62	0.32	0.02
Volume of biogas from one ton of			
dry manure, m ³	300	500	600

Table 5.

Biogas yield and methane content from different types of raw materials

RawmaterialGas output from 1		Methane	
type		kg of dry mode, m ³	storage, %
Animal	manure		
Large	cattle	0.050-0.34	65

JOURNAL OF MULTIDISCIPLINARY BULLETIN ISSN(Online): 2984-6722 SJIF Impact Factor | (2024): 6.752 | Volume-7, Issue-5, Published | 20-05-2024 |

0.340-0.580	65-70
0.310-0.620	60
0.200-0.300	56-60
0.300-0.620	70
0.310-0.740	70
0.330-0.500	50-70
0.280-0.490	60-75
0.400-0.500	85
0.200-0.300	50-60
0.200-0.300	59
0.290-0.310	59
0.380-0.460	59
0.360	59
0.165	
0.300	59
0.430-0.490	
0.280-0.630	70
0.210-0.290	58
	0.310-0.620 0.200-0.300 0.300-0.620 0.310-0.740 0.330-0.500 0.280-0.490 0.400-0.500 0.200-0.300 0.200-0.300 0.290-0.310 0.380-0.460 0.360 0.360 0.165 0.300 0.430-0.490 0.280-0.630

In addition, digesting manure deodorizes (deodorizes) it, removes gelments and wild plant seeds, and converts fertilizers into easily absorbed form (mineral form).

During anaerobic digestion of manure, potassium and phosphorus content in it does not change completely. If 30% of nitrogen substances are lost when using other methods of manure processing, 5% is lost during anaerobic digestion. It should also be remembered that nitrogen in fresh manure is in organic form, as a result of anaerobic digestion. passes into the form of ammonium, which is convenient for the plant.

It is a difficult task to make an economic calculation of the environmental benefits of anaerobic digestion of manure. Manure treated in this way is biologically stable and does not attract insects. After anaerobic digestion, the odorcausing substances in manure disappear.

Table 6.

Amount of strong smelling substances in composted manure

Compounds	Natural manure, %	Fertilized manure, %
Phenol	100	4
Cresol "P"	100	10
Skatol	100	79
Fatty acid	100	3

During anaerobic processing, the amount of pole viruses is reduced by 98.5%, the index E.coli is from 10^{8} to 10^{5} - 10^{4} , parasite seeds disappear by 90-100%

Rising energy prices are manna In this period, especially, the use of anaerobic biological process brings great economic benefits.

Anaerobic treatment of manure should be considered not only as a source of energy, but also as an additional source of energy.

USED BOOKS :

1. Oʻzbekiston Respublikasi Prezidentining 2019 yil 22 avgustidagi PQ-4422-son garori. https://lex.uz/docs/4486125

2. Oʻzbekiston Respublikasi Prezidentining 2013 yil 1-martidagi "Muqobil energiya manbalaridan foydalanishni takomillashtirish chora-tadbirlari toʻgʻrisida" gi PFN•4512-sonli farmoni.

3. Davranov Q.D. Biotexnologiya: amaliy va uslubiy qo'llanmalar. Toshkent. Print-Press. 2008 yil. 650 b.

4. Teshaboev A.,Raximov N va boshqalar. "YArim oʻtkazgichli asboblar fizikasi". Hayot nashriyoti. Andijon. 2002, 136 b.

5. Xakimova SH.I. Oziq-ovqat mikrobiologiyasi. T.:TKTI. 2005. - 178.